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Appendix 11 

Here we outline an explanation for why genetic parallelism decreases rapidly with the angle of 12 

divergence, θ (Fig. 2A, and distance between optima (Fig. S15B). Our explanation focuses on 13 

the extent of phenotypic space wherein mutations improve the fitness of both adapting 14 

populations in their respective environments. At the time of founding both adapting populations 15 

have the same mean phenotype, which is the mean ancestral phenotype. Mutations that move this 16 

ancestral mean phenotype into the region that leads to higher fitness in both parental 17 

environments are thus beneficial in both populations. The region of phenotypic space that has 18 

higher fitness than the mean phenotype in one environment is a hypersphere (of dimension m), 19 

centred on the optimum with a radius equal to the distance between the mean phenotype and the 20 

optimum, d. A similar hypersphere characterizes the phenotypic space that has higher fitness 21 

than the mean phenotype in the other parental environment. The region that is mutually 22 

beneficial is then the intersection of two hyperspheres, which is the union of two hyperspherical 23 

caps. 24 

Fortunately, the volume of a hyperspherical cap is known for any dimension, m (Li 25 

2011). It depends on the dimensionality (m), the radii of the two hyperspheres (D), and the 26 

distance between their centers (). In our case the distance between the two centres is  = 2d * 27 

sin(θ/2). The amount of phenotypic space that is beneficial in a given environment is simply the 28 

volume of one of the hyperspheres. Thus, dividing the volume of the mutually-beneficial space 29 

(the union of the hyperspherical caps) by the volume of the space beneficial in a given 30 

environment (one of the hyperspheres) gives the fraction of beneficial mutations which are 31 

mutually beneficial. Using the formula given by Li (2011; their eqn 3) for the volume of a 32 

hyperspherical cap created by the intersection of two m-dimensional hyperspheres with radii d 33 
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whose centres are distance  = 2d * sin(θ/2) apart, the fraction of beneficial mutations that are 34 

expected to be beneficial in both is: 35 

Ix[(1 + m)/2, 1/2]           (A1) 36 

where Ix[a, b] is the regularized incomplete beta function (Equation 6.6.2 in Abramowitz and 37 

Stegun [1972]) and here x = Cos(θ/2)2. Eq. A1 depends on only m and θ, that is the solution is 38 

independent of the distance from the ancestor to the new optima, d. We refer to Eq. A1 as the 39 

fraction of overlap in the main text, but note that this is only true when d1 = d2 (the formula is 40 

more complex when d1 ≠ d2, but can easily be used, e.g., Fig. S16B). The incomplete regularized 41 

beta function arises from integrating sinm(θ) over θ (Li 2011). 42 

The solution of Eq. A1 exhibits a rapid decrease with θ for all values of m > 0, and the 43 

decrease is faster for greater values of m (Fig. 2B). Thus, if standing genetic variation was 44 

uniformly distributed throughout the beneficial hyperspheres, the percent of segregating 45 

beneficial mutations that were beneficial in both parental populations, and thus expected to 46 

potentially fix in both, would decrease rapidly with the angle of divergence.  47 

The above analysis considers only the very onset of adaptation, when the two parental 48 

populations have the same mean phenotypes, such that the fraction of phenotypic space that is 49 

beneficial in one population that is also beneficial in the other population (call this X) is 50 

equivalent to the fraction of possible beneficial mutations (if uniformly distributed across the 51 

hyperspheres) that are beneficial in both populations (call this Y). As adaptation proceeds the 52 

mean phenotypes of the parental populations depart from one another and X therefore no longer 53 

equals Y. This is because mutations are vectors that move a phenotype in a particular direction, 54 

and thus a mutually beneficial point in phenotypic space is only guaranteed to be a mutually 55 

beneficial mutation if both populations have the same mean phenotype. 56 
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To account for the inequality between phenotypic space (X) and mutational vectors (Y) 57 

during adaptation we must shift the mean phenotypes so that they are at the same point in 58 

phenotypic space and move their optima by an identical translation (see Fig. A1). We then have 59 

X=Y. One way to imagine this is to keep the mean phenotypes in place at the mean ancestral 60 

phenotype (the origin) and consider adaptation as the movement of the optima closer to the mean 61 

phenotypes. From this perspective, adaptation’s effect is a shrinking of the radii of the 62 

hyperspheres (at roughly equivalent rates in the two populations if adaptation proceeds relatively 63 

deterministically). Thus, because the fraction of overlap (Eq. A1) does not depend on the radii of 64 

the hyperspheres, the fraction of overlap is expected to remain constant throughout adaptation. 65 

In reality and in our simulations, standing genetic variation is not uniformly distributed, 66 

the probability of fixation varies across the region of overlap, and adaptation uses up some of the 67 

standing variation so that the distribution of standing variation changes with time. Taking the 68 

first two complications into account would require weighted averages across the space contained 69 

in the hyperspherical caps, which is beyond the scope of our study. The third complication is yet 70 

more involved and would require an analysis of how standing genetic variation is used as 71 

adaptation proceeds (i.e., how the distribution of segregating effects and allele frequencies shift 72 

as alleles fix). Such a calculation is also beyond the scope of this article. Despite these 73 

complications, it seems as though the simple analysis above qualitatively captures the essence of 74 

why genetic parallelism decreases rapidly with the angle of divergence. 75 

  76 
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 77 

Fig. A1. Cartoon illustration of why divergence among populations does not affect whether 78 

an allele is beneficial in both of them. Panel (i) depicts the phenotype landscape and selection 79 

landscape. Variation in the horizontal dimension reflects phenotypic variation in body size, and 80 

the vertical dimension reflects variation in body shade. We depict two ‘populations’ with 81 

differences in body size and shade (small & light; big & dark). The stars reflect local optima 82 

after a hypothetical environmental shift—selection favours adaptation toward a larger body size 83 

in population 1 and selection for darker body shade in population 2. If we illustrate the circle of 84 

beneficial mutational space (dashed circles) with respect to the current phenotypic position they 85 

do not overlap. Panel (ii) illustrates the selection landscape as it is ‘experienced’ by each 86 

population. An allele that slightly increases body size and darkens the body shade from the 87 

current phenotype (the position of the fish cartoons) is beneficial (blue) in both of populations. 88 

Some alleles are beneficial in only one population, and others are deleterious in both (red). Thus, 89 

even though the spheres do not overlap in (i) it is not the case that they populations will undergo 90 

non-parallel genetic evolution.  91 
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Supplementary figures 92 

 93 
Figure S1. Genetic parallelism across the continuum of parallel to divergent natural 94 

selection (N = 100). This figure presents simulations similar to Fig. 2A in the main text but with 95 

varying parameter values (selection [σ] and dimensionality [m]). We ran these particular 96 

simulations for T = 5000 generations. All other parameters as in main text. 97 

  98 
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 99 
Figure S2. Genetic parallelism across the continuum of parallel to divergent natural 100 

selection (N = 1000). This figure presents simulations similar to Fig. 2A in the main text but 101 

with varying parameter values (selection [σ] and dimensionality [m]). We ran these particular 102 

simulations for T = 2000 generations. All other parameters as in main text.  103 
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 104 
Figure S3. Genetic parallelism across the continuum of parallel to divergent natural 105 

selection (N = 5000). This figure presents simulations similar to Fig. 2A in the main text but 106 

with varying parameter values (selection [σ] and dimensionality [m]). We ran these particular 107 

simulations for T = 1000 generations. All other parameters as in main text. These simulations are 108 

computationally intensive and were therefore not run for as many replicates as those plotted in 109 

Fig. S2 or S3.   110 
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 111 
Figure S4. Effect of standing genetic variation on hybrid fitness across the continuum of 112 

parallel to divergent natural selection (N = 100). This figure presents simulations similar to 113 

Fig. 4B in the main text but with varying parameter values (selection [σ] and dimensionality 114 

[m]). We ran these particular simulations for T = 5000 generations. All other parameters as in 115 

main text. Note different y-axis scales across rows. 116 

  117 
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 118 
Figure S5. Effect of standing genetic variation on hybrid fitness across the continuum of 119 

parallel to divergent natural selection (N = 1000). This figure presents simulations similar to 120 

Fig. 4B in the main text but with varying parameter values (selection [σ] and dimensionality 121 

[m]). We ran these particular simulations for T = 2000 generations. All other parameters as in 122 

main text. Note different y-axis scales across rows. 123 

  124 
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 125 
Figure S6. Effect of standing genetic variation on hybrid fitness across the continuum of 126 

parallel to divergent natural selection (N = 5000). This figure presents simulations similar to 127 

Fig. 4B in the main text but with varying parameter values (selection [σ] and dimensionality 128 

[m]). We ran these particular simulations for T = 1000 generations. All other parameters as in 129 

main text. Note different y-axis scales across rows. 130 

  131 
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 132 
 133 

Figure S7. Properties of fixed mutations under a variety of parameter combinations (N = 134 

1000). This figure presents simulations similar to Fig. 6 in the main text but with varying 135 

parameter values (selection [σ] and dimensionality [m]). See main text and panel description of 136 

Fig. 6 for more detail. Patterns were similar for other population sizes.  137 
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 138 
Figure S8. Simulations under various fitness functions. Here we plot simulations across 139 

environments for (A & B) Gaussian (W = exp(−σ ||z – o||2/2); equation 1), (C & D) linear (W = 1 140 

– σ ||z – o||), and (E & F) quadratic (W = 1 – σ ||z – o||2/2) fitness functions. We show results for 141 

both genetic parallelism and the effect of standing variation on hybrid fitness. We ran these 142 

simulations with a nearer optimum and weaker selection (d = 0.5, σ = 0.5, N = 1000, m = 5) 143 

because populations otherwise became extinct with linear/quadratic fitness functions. Under 144 

these conditions, the non-linear decrease in parallelism is less substantial for all parameter 145 

values. Nevertheless, the patterns are qualitatively similar among the three sets of simulations 146 

(note differences in y-axis scales).  147 
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 148 
Figure S9. Mutation-selection balance and mutation effect sizes in ancestral populations. In 149 

panel (A) we are showing the number of segregating sites in each of 10 ancestral populations and 150 

(B) the mean frequency of the derived alleles at each of these sites in the ancestral populations. 151 

The black line is plotted through the mean of all populations at each generation, and all ten burn-152 

ins used to generate our main text results are shown. Panel (C) illustrates the distribution of 153 

mutation effect sizes—the Euclidean distance of a mutational vector in phenotypic space—at the 154 

end of a single representative burn-in simulation (dark green), as compared to the distribution of 155 

mutations that arise de novo (light green). The vertical lines represent the median mutation effect 156 

size for each group. Panel (D) represents the site-frequency spectrum for segregating sites 157 

(excluding sites that have fixed). And panel (E) shows the phenotypic variance in the ancestral 158 

population over time. (σ = 0.01; m = 5 for all simulations shown; for rest of parameters see Table 159 

1). 160 

161 
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 162 
Figure S10. Mutation-selection balance and mutation effect sizes in ancestral populations 163 

under stronger selection (σanc = 1). These parameter values imply μ << α2 σ, as in the House-of-164 

Cards regime (Turelli 1984, 1985) from a Gaussian regime under an alternative set of 165 

parameters. (A) The number of segregating sites in each of 10 ancestral populations and (B) the 166 

mean frequency of derived alleles at each of these sites in the ancestral populations. The black 167 

line is plotted through the mean of all populations at each generation, and all ten burn-ins used to 168 

generate the results ([e] and [f]) are shown. Panel (C) illustrates the distribution of mutation 169 

effect sizes—the absolute value of a mutation’s effect on the phenotype—at the end of a single 170 

burn-in simulation, as compared to the distribution of mutations that arise de novo. The vertical 171 

lines represent the median mutation effect size for each group. Panel (D) represents the site-172 

frequency spectrum histogram for segregating sites. (Compare these to Fig. S9). Panels (E) and 173 

(F) are as in Fig. 2A and 4B in the main text. For unspecified parameters see Table 1 in the main 174 

text. This parameter combination t  175 
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 176 
Figure S11. The effects of standing genetic variation on genetic parallelism and phenotypic 177 

segregation variance in hybrids under parallel and divergent natural selection. We show 178 

(A) genetic parallelism (main text equation 2) and (B) net segregation variance for populations 179 

founded with varying quantities of ancestral standing variation (n: number of ancestral 180 

mutations). Populations were subject to either parallel (θ = 0°; black) and divergent (θ = 180°; 181 

grey) selection, with d=1, and there were 10 replicate simulations per parameter combination. 182 

Genetic parallelism values of 0 indicate no parallelism and values of 1 indicate complete 183 

parallelism (main text Eq. 2). The curves are loess fits. Panel (C) shows that the quantity of 184 

ancestral standing variation that maximizes genetic parallelism under parallel selection (θ = 0°) 185 

increases when populations adapt to more distant optima. A value of d = 1 is 10 mutational SDs. 186 

The line is a linear regression. Panel (D) shows the relationship between the genetic (phenotypic) 187 

variation in a parental population as a function of n.   188 
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 189 
Figure S12. Effect of standing variation on the pace of adaptation and attainment of 190 

mutation-selection-drift balance. (A) Populations that adapt with standing variation in addition 191 

to new mutation (DNM & SGV; n = 100 segregating alleles; dark green) reach the phenotypic 192 

optimum more quickly than populations that adapt from new mutation only (DNM; n = 0 193 

segregating alleles; light green). (B) Although populations equipped with standing variation 194 

adapt more quickly than populations adapting from new mutation only, they both reach 195 

mutation-selection-drift balance by generation 2000. (C) The phenotypic (genotypic) variance in 196 

parental populations, calculated as it is in hybrids (see main text), is stable and near zero by the 197 

end of each simulation. The initial distance to the optima, d, is 1 for all simulations. We plot 10 198 

replicate simulations, and lines connect the mean values at each sampled generation. For 199 

unspecified parameters see Table 1 in the main text. 200 

  201 
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 202 
Figure S13. Relationship between genetic parallelism and (A) segregation variance and (B) 203 

expected heterozygosity. Our metric of genetic parallelism (main text equation 2) is on the x-204 

axis. This is the data plotted in Fig. 2A & 2C of the main text. We show the correlation between 205 

genetic parallelism and (A) segregation variance (r2
 = 0.56) and (B) genome-wide expected 206 

heterozygosity (2p[1-p], averaged across all loci (r2
 = 0.63). Patterns were similar for FST 207 

(Hudson et al. 1992) and net π (Nei and Li 1979) (not shown).  208 
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 209 
Figure S14. Alternative presentation of simulation results across environments: distance 210 

between optima (𝛿). Panel (A) plots the relationship between the angle of divergence, θ, and the 211 

Euclidean distance between parental optima, 𝛿 (thick black line; note reversal of left y-axis; 212 

scaled between 0 and 1 by dividing by 2d). We also plot the fraction of non-overlap (right 213 

[green] y-axis) as in the main text Fig. 3A for four different dimensionalities (m; coloured lines). 214 

Panel (B) shows observed (scaled) genetic parallelism vs. 𝛿 for the same dimensionalities as 215 

plotted in (A). For a given value of θ, 𝛿 is invariant with dimensionality (i.e., the distance 216 

between optima does not change as dimensionality increases). Accordingly, the nonlinearity 217 

emerges even when considering 𝛿, but only appreciably when considering higher dimensions (m 218 

> 5). In both panels, the thin and straight black line connects the fit at 0° with 180° for visual 219 

reference. In panels (C) and (D) we show the raw data for genetic parallelism and relative hybrid 220 

fitness in simulations conducted for simulations conducted 10 dimensions (m = 10, σ = 1, N = 221 

1000). 222 

223 
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 224 
Figure S15. The effect of population size on the rate of divergence between populations due 225 

to drift. We show populations held at a common optimum with no standing variation (i.e. d = 0, 226 

n = 0) and plot (A) segregation variance and (B) expected heterozygosity in hybrids over time for 227 

5,000 generations. The evolution of segregation variance is proportional to the rate of evolution 228 

of reproductive isolation under parallel natural selection. Greater drift in smaller populations 229 

leads to greater segregation variance and heterozygosity. The lines are drawn as the average of 230 

10 replicate simulations (m = 5, σ = 1).  231 
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 232 
Figure S16. Effect of dimensionality on net segregation variance. These plots are similar to 233 

Fig. 2C in the main text except we show results for three different dimensionalities. Under 234 

divergent natural selection, simulations where populations adapted from standing variation (dark 235 

green) had higher segregation variance—relative to simulations where populations adapted only 236 

from de novo mutation (light green)—in higher dimensions. Note the overall trend of a decrease 237 

in net segregation variance as dimensionality increases. 238 

239 
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 240 
Figure S17. Fraction of overlap of beneficial mutations with parallel selection (θ = 0°) but 241 

unequal distance (d1 ≠ d2). The main text explores how the fraction of overlap changes with 242 

theta while holding d1 = d2 = d constant. Here we explore how the fraction of overlap changes 243 

with the ratio d2 / d1 when holding θ = 0° constant. Unlike the metric presented in the main text 244 

this metric is asymmetrical because one population is completely contained within the other. 245 

Panel (A) plots the fraction of overlap for population 1 (the fraction of alleles that are beneficial 246 

in population 1 are also beneficial in population 2) as a function of d2 / d1. With d1 < d2 the value 247 

is 1 for any ratio d2 / d1 because population 1's hypersphere is contained within population 2's. 248 

Panel (B) plots the fraction of alleles that are beneficial in population 2 that are also beneficial in 249 

population 1. This latter result mirrors what is seen in the main text Fig. 3A: as the locations of 250 

the optima depart from one another the fraction of overlap rapidly approaches zero and does so 251 

most rapidly at the onset of departure. Panel (C) shows a cartoon example of a case in 2-252 

dimensions where d2 = 2d1. 253 

  254 
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 255 
Figure S18. The effect of standing genetic variation (SGV) on relative maximum hybrid 256 

fitness across environments. Data are from simulations plotted in the main text, but instead of 257 

mean fitness of all hybrids we depict the mean fitness of the top 5 % of hybrids relative to the 258 

mean fitness of parents. We plot both the (A) raw values of relative maximum fitness and (B) the 259 

effect of standing variation on maximum hybrid fitness (dark green divided by light green).  260 
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 261 
Figure S19. The relationship between segregation variance and θ for different 262 

dimensionalities. We plot the loess fits of proof-of-concept simulation results with 95 % 263 

confidence intervals conducted in four different dimensionalities (colours), each scaled between 264 

0 (at 0°) and 1 (at 180°). Simulations were conducted with strong natural selection (σ = 10) to 265 

minimize the effect of drift. 266 
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